SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Комбинаторика — важный раздел математики, знание которого необходимо представителям самых разных специальностей. С комбинаторными задачами приходится иметь дело физикам, химикам, биологам, лингвистам, специалистам по кодам и др. Комбинаторные методы лежат в основе решения многих задач
теории вероятностей и ее приложений, В книге в популярной форме рассказывается об интересных комбинаторных задачах и методах их решения.
В работе впервые доказана теорема – обобщенная формула
Леонарда Эйлера для произвольного непланарного графа, то есть графа
с пересечением ребер. Введено определение степени точки пересечения
для ребер графа по аналогии с определением со степенью вершины
графа.
Полученная формула найдет применение в теории графов и
войдет в курс лекций по дискретной математике и теории графов. Для
студентов физико-математических специальностей, студентов
педагогических, технических университетов, преподавателей,
инженеров, программистов использующих в своей практической
деятельности теорию графов, комбинаторную геометрию, теорию
алгоритмов.
В работе впервые доказана теорема – обобщенная формула Леонарда Эйлера для произвольного непланарного графа, то есть графа с пересечением ребер. Введено определение степени точки пересечения для ребер графа по аналогии с определением со степенью вершины графа. Полученная формула найдет применение в теории графов и войдет в курс лекций по дискретной математике и теории графов. Для студентов физико-математических специальностей, студентов педагогических, технических университетов, преподавателей, инженеров, программистов использующих в своей практической деятельности теорию графов, комбинаторную геометрию, теорию алгоритмов.
В 1962 г. геометры Людвиг Данцер и Бранко Грюнбаум предложили выяснить, насколько много точек может содержать такое множество точек в n-мерном пространстве, любые три точки которого образуют остроугольный треугольник. Несложно придумать такое множество из 2n − 1 точки. Авторы задачи думали, что лучшей конструкции не бывает. Гипотеза продержалась более двадцати лет, пока Пол Эрдёш и Золтан Фюреди с помощью весьма изящной комбинаторики её не опровергли. Оказалось, существует такое множество из [cn/2] точек, где c = 2/√3.
Брошюра посвящена изложению конструкции Эрдёша––Фюреди, основанной на применении вероятностных методов в комбинаторике. Текст представляет собой обработку записи лекции для школьников 9––11 классов, прочитанной автором 16 апреля 2005 года на Малом мехмате МГУ.
Для широкого круга читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей.