SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
В монографии изложены несколько разделов геометрической теории функций. Описаны применения к краевым задачам и изопериметрическим проблемам математической физики. Предназначена для аспирантов и молодых ученых, интересующихся приложениями комплексного анализа. Библиография: 168 названий, 16 иллюстраций.
В монографии описаны изопериметрические проблемы и конформно инвариантные интегральные неравенства в плоских и пространственных областях, снабженных гиперболической метрикой Пуанкаре. Предназначена для аспирантов и молодых ученых, интересующихся геометрическим анализом. Библиография: 118 названий.
Работа посвящена очень интересной и очень важной теме: исследованию диофантовых уравнений второй степени; этой темой начали интересоваться математики ещё в третьем веке до нашей эры. В данной работе автором предложен новый метод исследования упомянутых уравнений, позволяющий решать как уравнения с двумя или тремя неизвестными, так и уравнения с двадцатью и тридцатью неизвестными (это показано в данной работе), т.е. метод о котором мы только что упомянули, позволяет находить решения уравнений второй степени с любым числом неизвестных. При этом в данной работе автор уделяет внимание прежде всего уравнениям с одним или большим числом параметров, а конкретные уравнения рассматриваются для иллюстрации результатов, касающихся соответствующих уравнений с параметрами. Работа Полякова В.Н. «Диофантовы уравнения второй степени» представляет большой интерес для всех, кто интересуется математикой и заслуживает опубликования.
В пособии изложен материал курса математического анализа. Представлены начальные сведения по предмету, охарактеризованы функции, теория пределов, дифференциальное и интегральное исчисление функции одного аргумента и дифференциальное исчисление функций нескольких переменных. Пособие снабжено большим количеством иллюстраций и гиперссылками на анимационные ролики, созданные автором и выложенные в сети Интернет.
Предназначено для студентов 1-х курсов информационных направлений, преподавателей и школьников, изучающих основы математического анализа.
Книга написана выдающимся советским математиком В.А. Стекловым. Первая часть ее посвящена классической задаче Штурма - Лиувилля. Здесь, в частности, доказывается, что собственные функции задачи Штурма - Лиувилля в случае трех классических типов граничных условий образуют ортонормированный базис пространства L2 и устанавливаются точные теоремы (теоремы Стеклова) о разложении функций в ряды Фурье по этому базису.
Во второй части книги изучаются основные краевые задачи для трехмерного эллиптического уравнения. В отличие от обычных методов, решения краевых задач представляются в виде рядов по некоторым специальным функциям (функциям Стеклова). Интерес к разложениям в ряды по функциям Стеклова, являющимся далеко идущим обобщением шаровых функций, решений краевых задач для эллиптических уравнений становится все большим и большим.
Первое издание (в двух томах) вышло в 1922, 1923 гг.
Книга может быть полезной для аспирантов и научных работников в области математики и прикладных наук. Она может быть использована и студентами.
Математическое описание катастроф - скачкообразных изменений, возникающих в виде внезапного ответа системы на плавное изменение внешних условий, дается теориями особенностей и бифуркаций. Их применения к конкретным задачам в разных областях науки вызвали много споров. В книге рассказывается о том, что же такое теория катастроф и почему она вызывает такие споры. Изложены результаты математических теорий особенностей и бифуркаций. Новое издание дополнено обзором недавних достижений теории перестроек, библиографией и задачником.
Рассчитана на научных работников, преподавателей, студентов и всех, кто интересуется современной математикой.
Квадратные трёхчлены x 2 + px + q образуют двупараметрическое семейство: каждому из них соответствует точка плоскости с координатами (p, q). Дискриминантное условие p 2 4q = 0 можно рассматривать как уравнение кривой, разделяющей точки этой плоскости, соответствующие многочленам с разным числом корней. Аналогичные (но сложнее устроенные) разделяющие множества имеются и для уравнений более высоких степеней, а также для систем уравнений. Знать их геометрию очень полезно для исследования уравнений с параметрами и для решения многих других задач.
Текст брошюры представляет собой запись лекции, прочитанной автором 14февраля 2015г. на Малом мехмате МГУ для школьников 9-11 классов.