SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
В книге содержится теория потоков и ее применения к вариационному исчислению, а также необходимый подготовительный материал — грассманова алгебра, теория меры, инвариантное интегрирование по группам и однородным пространствам. Монография на английском языке вышла в 1969 г. Представление развитии этой тематики в последующие годы дают добавленные при переводе обзоры А. Т. Фоменко и Л. Д. Иванова.
Для математиков — специалистов по теории функций, геометров, топологов и др.; может служить учебным и справочным пособием для студентов старших курсов и аспирантов.
Групповой анализ дифференциальных уравнений возник как научное направление в работах выдающегося математика XIX века Софуса Ли (1842–1899) и служил главной составной частью его важнейшего творения — теории непрерывных групп.
Первоначальная основная задача группового анализа — вопрос о разрешимости в квадратурах дифференциальных уравнений — была практически решена самим Ли, но не нашла широкого применения.
Хотя подход Ли к дифференциальным уравнениям ещё использовался его ранними последователями, позже исследования в этом направлении прекратились, и надолго.
Книгу, безусловно, можно отнести к классическим сочинениям и она до сих пор не потеряла своего значения. Книга содержит много материала, не входящего в распространенные у нас учебники. В книге много примеров и задач. В книге излагаются также некоторые вопросы вещественного анализа. Она послужит ценным дополнением к существующей на русском языке учебной литературе по теории функций.
Перевод с немецкого Д.А.Райкова.
Пособие охватывает классические разделы теории функций комплексного переменного: дифференцирование, разложение в функциональные ряды, анализ особых точек и вычисление вычетов. Рассмотрено применение преобразования Лапласа и z-преобразования для решения линейных дифференциальных и разностных уравнений. Особое внимание уделено специфике решения задач анализа выходных процессов и устойчивости линейных одномерных и многомерных непрерывных и дискретных динамических систем, исследуемых в теории управления.
Для студентов высших технических учебных заведений.
Математический анализ в этой -книге изучается на геометрической и физической основе. Непрерывный график и движение сами по себе служат основой для фундаментальных выводов. Излагаются дифференциальное и интегральное исчисления и их приложения. Последняя глава посвящена действительному числу, изучаемому на базе представления его в виде десятичной (вообще бесконечной) дроби. Первое издание вышло в 1981 г. Для второго издания книга переработана и дополнена. Для школьников и преподавателей средних школ. Может оказаться полезной учащимся техникумов и для самообразования.
Учебник для студентов физических и механико-математических специальностей вузов написан на основе курса лекций, читаемого автором в Московском физико-техническом институте. Фактически принят как учебное пособие в некоторых втузах с повышенной программой по математике.
Книга содержит дифференциальное и интегральное исчисления функций одной и многих переменных, теорию поля, ряды и интегралы Фурье, начала теории банаховых пространств и обобщенные функции.
Учебник исчерпывает соответствующую часть программы по математико на получение звания бакалавра.
Пятое издание — 2000 г.
Учебник для студентов физических и механико-математических специальностей вузов написал на основе курса лекций, читаемого автором в Московском физико-техническом институте. Фактически принят как учебное пособие в некоторых втузах с повышенной программой но математике. Первый том содержит дифференциальное исчисление функций одной и многих переменных, ряды и интегральное исчисление для функций одной переменной. Для третьего издания учебник существенно переработан и дополнен.
Один из выпусков “Курса высшей математики и математической физики” под редакцией А.Н.Тихонова. В.А.Ильина. А.Г.Свешникова.
Учебник создан на базе лекций, читавшихся авторами в течение ряда лет на физическом факультете и на факультете вычислительной математики и кибернетики Московского государственного университета.
Книга включает теорию функциональных последовательностей и рядов, кратных (в том числе несобственных), криволинейных и поверхностных интегралов, интегралов, зависящих от параметров, теорию рядов и интегралов Фурье.
Для студентов высших учебных заведений, обучающихся по специальностям “Физика” и “Прикладная математика”.
Одним из впечатляющих достижений С. Ли (1842—1899) явилось открытие, что известные частные методы интегрирования обыкновенных дифференциальных уравнений, казавшиеся искусственными и лишенными внутренней связи, могут быть выведены единообразно при помощи теории групп.
Настоящая брошюра поможет читателю освоиться с совокупностью знаний и навыков по групповому анализу обыкновенных дифференциальных уравнений. Она может служить в качестве краткого практического руководства для широкого круга научных работников, преподавателей и студентов.