SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Настоящее второе издание второй части книги существенно отличается от первого в двух отношениях. Прежде всего, из материала первого издания сохранены лишь разделы посвященные непосредственно стереометрии вместе с ее дополнительными
главами (инверсия, теорема Эйлера, правильные многогранники и группы вращений): вопросы проективной и аналлагматической геометрии, а также синтетической теории конических сечений, входящие во вторую часть курса Адамара (и имеющиеся в первом издании второй части), в этом издании опущены. В то же время во втором издании книги помещены полные решения всех имеющихся в тексте задач.
Основой книги служит школьный курс геометрии на плоскости: однако содержание ее выходит за рамки существующих программ. Это энциклопедия элементарной геометрии, стоящая на уровне современной науки и написанная выдающимся математиком. Большое количество задач, многие из которых могут дать материал для творческой работы.
Книга воспроизводит содержание лекции, прочитанной автором участникам XXIX Московской математической олимпиады. В ней излагаются основные понятия, относящиеся к учению об “алгебрах Буля”, играющих большую роль в математической логике и важных для всех направлений математики, связанных с электронными вычислительными машинами и кибернетикой. В работе дается определение алгебры Буля и приводятся многочисленные примеры таких алгебр; в частности, специально рассматривается алгебра высказываний и указываются пути использования этой своеобразной алгебры для автоматизации математических доказательств; а также для самоконтроля приводятся упражнения.
Книга будет с интересом прочитана школьниками средних и старших классов, может быть использована в работе школьного математического кружка.
Книга предназначена для студентов физических и технических специальностей университетов и вузов.
Конспект лекций Е.В. Троицкого, 1-й курс математики, осенний семестр 1999/2000 уч. года
Книга отличается от традиционных руководств по линейной алгебре тем, что материал излагается в тесной связи с многочисленными приложениями. В виде отдельных глав представлены метод исключения Гаусса, ортогональные проекции, положительно определенные матрицы, линейное программирование и теория игр. Автор знаком советским читателям по переводу его (в соавторстве с Дж. Фиксом) «Теории метода конечных элементов» (М.: Мир, 1977).
Книга, несомненно, окажется полезной математикам-прикладникам различных специальностей; она заинтересует также и преподавателей, аспирантов и студентов университетов и втузов, преподающих или изучающих линейную алгебру и ее приложения.
Книга известного французского математика, уже знакомого нашему читателю по переводам его книг „Алгебраические группы и поля классов“ и „Когомологии Галуа“ (изд-во „Мир“, 1968), содержит изложение основ теории алгебр Ли и групп Ли, а также теорию комплексных полупростых алгебр Ли. Наряду с классическим случаем вещественных и комплексных групп Ли она охватывает случай р-адических групп Ли и является единственной в мировой литературе книгой, содержащей подробное изложение теории р-групп с точки зрения классических методов теории групп Ли.
Книга рассчитана на студентов старших курсов и аспирантов. Может быть полезна математикам различных специальностей.
Часть 1. Решетки (Предварительные сведения из топологии, алгебры и теории решеток. Булевы алгебры. Топологические булевы алгебры. Псевдобулевы алгебры). Часть 2. Классическая логика (Формализованные математические теории. Алгебра формализованных языков. Классические пропозициональные исчисления. Классические элементарные формализованные теории). Часть 3. Неклассические логики (Интуиционистские пропозициональные исчисления. Интуиционистские элементарные формализованные теории. Позитивная логика и модальная логика).
Сборник задач
Книга известного американского математика, дающая обстоятельный обзор одного из современных направлений на стыке геометрии и дифференциальных уравнений. Цель автора - обучить читателя практически пользоваться аппаратом теории групп Ли. Примеры и содержательные приложения занимают в книге больше места, чем общая теория; они взяты из классической механики, гидродинамики, теории упругости и других прикладных областей. Для чтения книги достаточно основ анализа и алгебры: все необходимые сведения из геометрии многообразий содержаться в самой книге.
Для математиков-прикладников ,механиков ,физиков, аспирантов и студентов университета.