SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Главная цель данной монографии состоит в том, чтобы рассмотреть основные методы оптимизации целевых функций (вплоть до математического программирования) в логичном порядке, подчёркивающем их генезис, а также заполнить имеющиеся “белые пятна”.
В 1-й главе излагаются аналитические аспекты решения задач на безусловный экстремум для целевых функций от скалярной или от векторной переменной. Рассматриваются решения специальных задач, в том числе задачи на доказательство иерархии всех средних величин, которой в 1, 3 и 4-й главах придаётся особое иллюстративное значение.
Во 2-й главе излагаются аналитические аспекты решения задач на условный экстремум для целевых функций от векторной переменной – либо зависимой от каких-нибудь параметров, либо ограниченной какими-нибудь уравнениями связи. Кроме того, в этой главе рассматриваются аналитические основы предельных методов. Показана геометрическая взаимосвязь всех трёх направлений условной оптимизации с использованием собственных функциональных проекторов в двух симметричных матричных формах. Выведено характеристическое (вековое) уравнение в стационарной точке для “условных собственных значений” матрицы Гессе.
В 3-й главе развит формальный анализ для неголоморфных функций от комплексных переменных (без увеличения их размерности как обычно вдвое). С применением формального анализа развиты методы безусловной и условной оптимизации для целевых вещественных функций от одной или нескольких пар комплексных сопряжённых переменных или от смешанных переменных.
В 4-й главе даны важные примеры решения экстремальных проблем в общей и линейной алгебре. Как один из результатов отметим теорему о полных требованиях к коэффициентам вещественного алгебраического уравнения для вещественности и положительности его корней.
В 5-й главе рассматриваются основные численные методы поиска экстремума для целевых функций 0-го, 1-го и 2-го порядка от одной или от нескольких скалярных переменных. Отдельно изложены методы поиска условного экстремума в двух ранее указанных вариантах переменной