SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
В настоящей работе излагаются основные сведения теории операционного исчисления по двум переменным и приводится большое число формул, относящихся к этой теории.
Книга предназначается для научных работников, инженеров, аспирантов и студентов старших курсов университетов и вузов, занимающихся операционным исчислением и его применением к решению различных математических задач.
Книга содержит весьма подробные таблицы неопределённых и определённых интегралов, а также большое число других математических формул: разложения в ряды, тригонометрические и другие тождества, справочный материал по специальным функциям.
В настоящем издании учтены все дополнения и исправления, внесённые в четвёртое американское издание, и исправлены замеченные опечатки.
На протяжении нашего курса мы уже несколько раз встречались с вопросом об интегральных уравнениях (т. I, § 137; т. II, § 389; т. III, § 513, 533, 547). Эта новая ветвь анализа очень быстро приобрела важное значение после работ Вольтерра (Volterra) и Фредгольма (Fredholm). Вольтерра занимался преимущественно изучением уравнений с переменными пределами; он рассматривал уравнения этого типа как предельный случай системы алгебраических уравнений, в которых число неизвестных неограниченно возрастает.
Эта же идея была использована с очень большим успехом Фредгольмом в исследовании уравнений с постоянными пределами. В настоящей главе мы сначала покажем, к какому очень простому результату приводит Вольтерра метод последовательных приближений.
В случае постоянных пределов этот метод вообще не дает полного решения, но приводит к важным свойствам резольвенты. Те трудности, которые возникают при определении аналитического характера этой резольвенты, дают возможность оценить важность окончательного шага, сделанного Фредгольмом*.
В настоящей книге рассматриваются краевые задачи теории аналитических функций и дифференциальных уравнений эллиптического типа и их приложения к особым (сингулярным) интегральным уравнениям с ядрами Коши, Гильберта, степенными, логарифмическими и некоторыми другими. Изложение ограничивается линейными задачами для одной неизвестной функции.
В настоящем издании книга значительно дополнена. Заново написан ряд новых параграфов. Дополнения ориентированы на новые работы, появившиеся за время между вторым и третьим изданиями.
В настоящей книге рассматриваются краевые задачи теории аналитических функций и дифференциальных уравнений эллиптического типа и их приложения к особым (сингулярным) интегральным уравнениям с ядрами Коши и Гильберта и некоторым другим. Изложение ограничивается линейными задачами для одной неизвестной функции.
В настоящем издании книга несколько дополнена. Заново написан ряд новых параграфов. Дополнения ориентированы на новые работы, появившиеся за время между первым и вторым изданиями.
Книга возникла из курса лекций, прочитанных автором студентам сначала Казанского, а затем Ростовского университетов, и предназначена для студентов старших курсов университетов и технических вузов с повышенной математической программой, аспирантов, а также для лиц, занимающихся решением задач математической физики методами теории функций комплексного переменного.
В настоящей книге рассматриваются краевые задачи теории аналитических функций и дифференциальных уравнений эллиптического типа и их приложения к особым (сингулярным) уравнениям с ядром Коши.
Книга предназначена для студентов старших курсов университетов, аспирантов, а также для лиц, занимающихся решением задач математической физики методами теории функций комплексного переменного.
В настоящем выпуске серии «СМЭ» рассматриваются интегральные преобразования в пространствах обобщенных функций. Книга состоит из двух частей. В первой части дается обзор различных методов введения и свойств интегральных преобразований обобщенных функций, а также соответствующих пространств основных и обобщенных функций.
Рассмотрены преобразования Фурье, Лапласа, Меллина, Ганкеля, Ганкеля—Шварца, K, I, Харди, Конторовича—Лебедева, Стилтьеса, Гильберта, Вейерштрасса, Вейерштрасса—Ганкеля, Варма, Пуассона—Лагерра, свертки и дробное интегрирование. Для некоторых преобразований ряд результатов формулируется также и в многомерном случае. Вторая часть книги содержит таблицы преобразований Фурье и Лапласа обобщенных функций медленного роста.
Книга предназначается математикам, физикам и специалистам в области прикладной математики.
«Таблицы интегральных преобразований» состоят из двух томов. Они вышли в США в 1954 г. и являются естественным дополнением и завершением трехтомного издания «Высшие трансцендентные функции» тех же авторов, перевод которого на русский язык вышел в этой же серии в 1965–67 гг. Перевод первого тома «Таблиц интегральных преобразований» вышел в свет в 1969 г.
Настоящая книга представляет собой перевод второго тома «Таблиц интегральных преобразований». Этот том содержит таблицы преобразований Бесселя, Римана–Лиувилля, Вейля, Стилтьеса, Гильберта, а также таблицы интегралов от специальных функций.
По полноте охвата материала это издание уникально. «Таблицы» являются настольной книгой для физиков теоретиков и экспериментаторов, инженеров-исследователей, математиков-прикладников и др.
Настоящая книга представляет собой перевод первого тома вышедших в США «Таблиц интегральных преобразований», непосредственно примыкающих к ранее опубликованному справочнику «Высшие трансцендентные функции». Этот том содержит таблицы для преобразований Фурье, Лапласа и Меллина. По полноте охвата материала издание уникально.
Книга является настольной для физиков-теоретиков и экспериментаторов, инженеров-исследователей, математиков-прикладников и др.
Излагаются результаты теоретических исследований отрывных течений несжимаемой жидкости при больших числах Рейнольдса, полученные на основе использования асимптотических методов.
Основное внимание уделяется проблемам самоиндуцированного отрыва при стационарном и нестационарном течениях, теории локальных отрывов у передних и задних кромок тонких профилей, а также исследованию глобальной структуры поля течения за тупым телом. Рассматриваются численные методы решения соответствующих задач о взаимодействии пограничного слоя с потенциальным потоком.
Для специалистов в области аэрогидродинамики.