SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Настоящее пособие составлено для подготовительных курсов факультета Вычислительной математики и кибернетики МГУ им. М.В.Ломоносова на основе задач письменных вступительных экзаменов по математике в МГУ за 1970-2000 годы.
Может быть полезно абитуриентам при подготовке к поступлению как на факультет ВМиК так и на другие факультеты МГУ.
Первый параграф предлагаемой вниманию читателя книжки посвящен доказательству следующей теоремы, найденной математиками Бояй и Гервином: если два многоугольника имеют одинаковую площадь, то один из них можно разбить на такие части, из которых возможно составить второй многоугольник. Более краткая формулировка: если два многоугольника равновелики, то они равносоставлены. Изучению некоторых вопросов, связанных с равносоставленностью фигур, посвящена вся книжка в целом. Она разделена на две главы, в первой из которых изучаются многоугольники, а во второй - многогранники. Сформулированная выше теорема является одной из основных в первой главе.
Во второй главе наиболее интересна теорема Дена: существуют многогранники, которые имеют одинаковый объем (равновелики), но не являются равносоставленными.
Двухтомник Исаака Моисеевича Яглома “Геометрические преобразования”, несомненно, является одной из основных, настольных книг для школьников, изучающих геометрию глубоко, служит ценнейшим подспорьем для их учителей в течение многих десятилетий. Книга была издана в 50-е годы сравнительно малым тиражом (1-й том - 1955 год, 25 000, 2-й том - 1956 год, 15 000).
Книга известного американского математика содержит современное изложение основ теории дифференцируемых многообразии, вариационного исчисления, дифференциальной геометрии, а также теории групп Ли.
Для чтения ее достаточно знаний начального университетского курса. Книга заинтересует математиков самых различных специальностей.
Книга представляет собой дополнительный набор задач к учебному пособию по геометрии для 5 - 8 классов. Она предназначена для учащихся 5 - 8 классов, желающих закрепить и углубить свои знания по геометрическим преобразованиям. Сборник задач может быть использован также учителями для организации самостоятельной работы школьников.
Текст брошюры подготовлен по материалам лекции, прочитанной автором 21 февраля 2004 года на Малом мехмате МГУ для школьников 9—11 классов.
Читатель познакомится с такими классическими задачами на максимум и минимум, как задача Фаньяно, задача о построении фигуры максимальной площади заданного периметра, задача Штейнера о кратчайшей системе дорог и многими другими. Одна из глав посвящена коническим сечениям и их фокальным свойствам. В брошюре излагаются решения перечисленных выше задач, особое внимание уделено проблеме доказательства существования решения в экстремальных задачах.
В конце каждого раздела помещён набор задач для самостоятельного решения.
Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, а также школьных учителей, руководителей математических кружков. При чтении последних разделов будет полезным (но не обязательным) знакомство с началами математического анализа.
Часть 4
Часть 3