SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Эллиптические функции — одна из красивейших глав классического анализа. После некоторого периода забвения они снова вызывают широкий интерес и находят применение в различных областях математики — теории чисел, алгебраической геометрии, дифференциальных уравнениях. Книга А. Вейля, видного французского математика, хорошо известного русскому читателю, принадлежит к редкому жанру. Это одновременно живое историко-математическое исследование, начальный курс теории эллиптических функций с многими полными доказательствами и введение в самые современные исследования. Она воплощает преемственность идей в актуальной области классического анализа. Написанная увлекательно и с большим педагогическим мастерством, книга будет интересна математикам различных специальностей и разного уровня подготовки — от студентов младших курсов до сложившихся исследователей.
Содержит задачи по интегральному исчислению функций нескольких переменных, дифференциальным уравнениям, векторному анализу, основам теории функций комплексной переменной, рядам и их применениям, включая ряды Фурье, и операционному исчислению. Краткие теоретические сведения, снабженные большим количеством разобранных примеров, позволяют использовать сборник для всех видов обучения.
Для студентов второго и третьего курсов высших технических учебных заведений.
Содержит задачи по линейной алгебре и аналитической геометрии, дифференциальному и интегральному исчислению функций одной и нескольких переменных. Краткие теоретические сведения, снабженные большим количеством разобранных примеров, позволяют использовать сборник для всех видов обучения. Для студентов первых курсов высших технических учебных заведений.
Содержит задачи по интегральному исчислению функций нескольких переменных, дифференциальным уравнениям, векторному анализу, основам теории функций комплексной переменной, рядам и их применениям, включая ряды Фурье, и операционному исчислению. Краткие теоретические сведения, снабженные большим количеством разобранных примеров, позволяют использовать сборник для всех видов обучения.
Для студентов второго и третьего курсов высших технических учебных заведений.
Использован большой набор оригинальных задач, предлагавшихся в течение многих лет студентам Московского физико-технического института. Много внимания уделено задачам, способствующим уяснению фундаментальных понятий. Все задачи снабжены ответами, приводятся решения типичных примеров и задач.
Книга содержит неопределенные и определенные интегралы, суммы и ряды, не вошедшие в предыдущие два справочника “Интегралы и ряды. Элементарные функции” и “Интегралы и ряды. Специальные функции”, опубликованные в издательстве “Наука” в 1981 - 1983 гг. Приведены таблицы представлений обобщенных гипергеометрических функций, б-функции Менера и их преобразований Меллина. Помещены разделы, посвященные свойствам гипергеометрических функций, б-функции Мейера и H-функции Фокса. Значительная часть результатов получена авторами и публикуется впервые. В совокупности три книги серии “Интегралы и ряды” по охвату материала и плотности информации значительно перекрывают все существующие ныне справочники в этой области математического анализа.
Книга предназначена для широкого круга специалистов в различных областях науки и техники, а также для студентов высших учебных заведений.
Имя Лорана Шварца — одного из крупнейших математиков современности —
хорошо известно советским специалистам.
Его двухтомный курс существенно отличается от всех имеющихся книг по анализу. Изложение характеризуется глубоким взаимопроникновением методов классического и функционального анализа, современной алгебры и топологии.
Следует отметить также блестящий стиль курса, умение автора выделить основное, объяснить значение тех или иных идей.
Первый том включает теорию множеств, топологию, дифференциальное и интегральное исчисление.
Книга Л. Шварца, несомненно, заинтересует преподавателей математики, научных работников в области математики, физики и механики, а также инженеров и будет весьма полезна студентам университетов, педагогических институтов и высших технических учебных заведений с углубленным изучением математики.
Как и предыдущие книги того же автора — «Математический анализ (конечномерные линейные пространства)» (М,, 1969) и «Математический анализ (функции одного переменного)» (чч. 1—2—М., 1969, ч. 3—М., 1970),—эта книга. представляет собою учебное пособие по курсу математического анализа. Она не
является учебником и не следует официальным программам курса; она рассчитана в первую очередь на студентов, знакомых уже с элементами дифференциального
и интегрального исчисления в желающих углубить свои знания. В гл. 1 строится теория дифференцирования для функций от конечного или даже бесконечного множества независимых переменных. В гл. 2 рассматриваются высшие
производные. В гл. 3 строится теория интегрирования для функций нескольких переменных. На основе построенного аппарата в гл. 4 излагается классический векторный анализ, в гл. 5—классическая дифференциальная геометрия, которая
развивается в гл. .6 в риманову геометрию. В гл. 7 излагаются избранные вопросы анализа на дифференцируемых многообразиях, в частности теория дифференциальных антисимметричных форм с соответствующими интегральными теоремами.
Имя Лорана Шварца — одного из крупнейших математиков современности — хорошо известно советским специалистам.
Его двухтомный курс существенно отличается от всех имеющихся книг по анализу. Изложение характеризуется глубоким взаимопроникновением методов классического и функционального анализа, современной алгебры и топологии.
Следует отметить также блестящий стиль курса, умение автора выделить ’основное, объяснить значение тех или иных идей.
Второй том посвящен дифференциальным уравнениям, внешним
дифференциальным формам и функциям комплексного переменного.
Книга Л. Шварца, несомненно, заинтересует преподавателей математики, научных работников в области математики, физики и механики, а также инженеров и будет весьма полезна студентам университетов, педагогических институтов и высших технических учебных заведений с углубленным изучением математики.
Книга представляет собой учебное пособие по курсу математического анализа. Она не является учебником и не следует официальным программам курса математического анализа, хотя формально знаний основ анализа не
предполагается. Книга рассчитана в первую очередь на студентов, знакомых уже с элементами дифференциального и интегрального исчисления и желающих углубить свои знания. В гл. | дается аксиоматическое построение теории вещественных чисел. В гл. 2 излагаются элементы теории множеств и теории
математических структур. Гл. 3 посвящена метрическим пространствам. В гл. 4 строится общая теория пределов, использующая упрощенную схему фильтров Картана. В гл. 5 рассматривается понятие непрерывности и изучаются элементарные трансцендентные функции. В гл. 6 излагается теория рядов— числовых и функциональных. Гл. 7—8 посвящены — собственно дифференциальному исчислению, а гл. 9—интегральному исчислению. Гл. 10 вводит читателя в теорию аналитических функций; ее методы используются, в частности, в гл. 11 о несобственных интегралах.