В работе представлена обучающая интеллектуальная система «Эксперт Полимер» для идентификации частиц, пригодных для 3D-печати. Программный комплекс предназначен для анализа изображений полимерных материалов на производственной площадке с помощью оптики. Планируется, что данная интеллектуальная система будет использоваться в качестве учебного комплекса программ для студентов высших учебных заведений, а также для биоинженеров и материаловедов в научно-производственных целях. В исследовании использовались технологии Интернета вещей (IoT) для получения изображений с оптических измерительных устройств (электронный микроскоп и др.) от пользователей системы и отправки им результатов анализа изображений. Путем взаимодействия электронного микроскопа с созданным программным комплексом выполнялась задача определения количества всех частиц и количества частиц, удовлетворяющих алгоритму 3D-печати. На основании этих данных эксперт принимает решение о возможности использования полимерных частиц для последующей 3D-печати. Для реализации системы использовались современные библиотеки языка программирования Python, а именно Pandas, Direction2 и YOLOv5 и другие.
Статья посвящена проблеме эквивалентности трехмерных геоэлектрических моделей, получаемых в результате 3D-интерпретации данных аэроэлектроразведки в средах, где локальные проводящие тела перекрыты неоднородным приповерхностным слоем. Для проведения исследований были использованы данные аэроэлектроразведки, выполненной на территории Creighton (Канада) при поиске полиметаллических руд. Для построения геоэлектрической модели использовалась двухэтапная 3D-инверсия. Первый этап 3D-инверсии заключался в восстановлении приповерхностных структур по данным съемки, полученным ранее. Второй этап 3D-инверсии основывался на карте невязок, построенной по практическим сигналам и сигналам, полученным после первого этапа 3D-инверсии, полученным позднее. По карте невязок задавались стартовые положения локальных тел под перекрывающим слоем и в ходе локальных 3D-инверсий определялись их геометрия и свойства. По результатам 3D-инверсии было выделено локальное проводящее тело, подтверждаемое данными бурения. Для трехмерной модели этого тела проводился анализ эквивалентности. Были рассмотрены различные варианты стартовых моделей, отличающиеся количеством блоков, описывающих тело, а также варианты изменения размеров блоков в модели, полученной в результате 3D-инверсии. Было установлено, что основная эквивалентность связана с большим расстоянием между полетными линиями, которое значительно больше расстояния между положениями установки на профиле. Поэтому большинство эквивалентных моделей характеризуется уменьшением размера блоков в направлении, ортогональном профилям, за счет увеличения их размера вдоль профиля и изменения сопротивления. При этом по критерию проводки скважин полученные эквивалентные модели были достаточно близкими, т.?е. с геологической точки зрения принципиальной разницы между полученными эквивалентными моделями не было получено.
Прямым сжиганием в калориметре KL-5 определена удельная теплота сгорания гидрата додекагидро-клозо-додекабората 2,4-диамин-6-метил-1,3,5-триазина, из которой рассчитаны его стандартные энтальпии сгорания (–14606 кДж/моль) и образования (–797 кДж/моль). С привлечением ДСК, ТГ, РФА, ИК и ХМС установлено, что на первой стадии термораспада (С4Н7N5Н)2[B12H12]∙Н2О (265−290 оС) выделяется ацетонитрил,в результате горения которого может развиваться температура до 4700 оС. В условиях калориметрической бомбы (высокое давление кислорода и температура) это вызывает полное сгораниe продуктов полураспада (С4Н7N5Н)2[B12H12]∙Н2О без образования В–С–N-содержащих остатков. Обсуждается важность учета влияния состава продуктов сгорания соединений аниона [B12H12]2− на точность расчета их термодинамических характеристик.
Настоящее исследование посвящено разработке способа получения 3-нитробензальдегида путем нитрования бензальдегида и его лабильных аддуктов с аминами и гидросульфитом натрия смесью азотной и серной кислот в качестве нитрующего агента.
В данной работе проведен сравнительный анализ реакции нитрования бензальдегида и его аддуктов дымящей и 65 %-ной азотной кислотой, изучено влияние нитрующего агента на селективность и изомерный состав продуктов реакции.
Исследовано влияние соотношения реагентов, температуры реакции и концентрации азотной кислоты на выход целевого продукта и содержание примесей.
Предложен новый подход к детектированию 3-хлорпропандиола-1,2 (3-МХПД) <<МЯГКИМИ>> масс-спектрометрическими методами.
В основе предложенного способа лежит химическая модификация целевого соединения дериватизирующими агентами, такими как 4-бромбутил- и 3-(бромметил) фенилбороновые кислоты, с последующей кватернизацией пиридина полученными производными.
Продуктами взаимодействия являются органические соли, катионы которых легко детектируются методами масс-спектрометрии с матричноактивированной лазерной десорбцией/ионизацией (МАЛДИ) и ионизацией электрораспылением (ИЭР).
Масс-спектры стимулированной фрагментации таких катионов содержат в основном пики ионов, соответствующие протонированным молекулам пиридина, что дает возможность использования мониторинга выбранных реакций для селективного детектирования 3-МХПД и других диолов.