ПРИМЕНЕНИЕ МОДЕЛЕЙ МАШИННОГО ОБУЧЕНИЯ ДЛЯ КОНТРОЛЯ КАЧЕСТВА ВИБРОДИАГНОСТИЧЕСКИХ ДАННЫХ (2024)
Данная статья нацелена на определение наиболее эффективной модели машинного обучения для кластеризации данных вибродиагностики. Исследование включает анализ различных моделей и методов, таких как k-means, Agglomerative Clustering, TimeSeriesKMeans и CatBoost. Цель состоит в выборе метода, способного наилучшим образом выявить структуру данных и улучшить понимание особенностей вибрационных сигналов. Результаты исследования могут быть полезны для разработки эффективных систем мониторинга и диагностики оборудования, а также для повышения надежности и производительности технических систем.
Выпуск:
Т. 11 № 3 (2024)