Линия ската как важный анатомический ориентир при выполнении эндоскопической вентрикулоцистерностомии дна III желудочка (2023)

Актуальность. Паутинные оболочки широко и неравномерно распределены в полости черепа и резко различаются по внешнему виду и конфигурации. Понимание особенностей распределения и конфигурации внутричерепных паутинных оболочек необходимо для того, чтобы в полной мере использовать естественные анатомические ориентиры во время операций.

Цель исследования. Изучение особенностей эндоскопической анатомии распределения и конфигурации паутинных оболочек основания головного мозга.

Материал и методы. Эндоскопическая, микрохирургическая анатомия паутинных оболочек основания мозга, базальных цистерн, линия ската изучены на 20 кадаверных препаратах с предварительно окрашенными цветным силиконом сосудами.

Результаты. Базальное прикрепление мезэнцефального листка мембраны Лилиеквиста и его каудальное продолжение в виде препонтинной мембраны по обе стороны от основной артерии образуют U-образное утолщение (линию ската) на наружной паутинной оболочке, оно служит надежным ориентиром для рассечения окружающих паутинных оболочек во время эндоскопической вентрикулоцистерностомии дна III желудочка (ЭВЦС III). Предложенные 4 типа перфорационных механизмов в зависимости от анатомических изменений внутренних паутинных оболочек позволяют спланировать идеальное положение стомы, связанное с комплексом мембраны Лилиеквиста, что предопределяет долгосрочный успех операции.

Заключение. U-образное утолщение (линия ската) на наружной паутинной оболочке служит надежным ориентиром для рассечения окружающих паутинных оболочек во время ЭВЦС III.

Издание: ОПЕРАТИВНАЯ ХИРУРГИЯ И КЛИНИЧЕСКАЯ АНАТОМИЯ (ПИРОГОВСКИЙ НАУЧНЫЙ ЖУРНАЛ)
Выпуск: № 4, Том 7 (2023)
Автор(ы): Альзахрани А. А., Дыдыкин С. С., Суфианов Альберт Акрамович, Якимов Юрий Александрович, Рустамов Р. Р., Суфианов Р. А.
Сохранить в закладках
Алгоритм машинного обучения в прогнозировании госпитальной летальности после аневризматического субарахноидального кровоизлияния (2024)

Применение современных методов машинного обучения (МО) для статистического анализа больших выборок пациентов существенно превышает возможности традиционных способов обработки информации в клинической медицине.

Цель. Разработать алгоритм применения рекуррентных нейронных сетей при анализе набора клинических данных пациентов с субарахноидальным кровоизлиянием (САК).

Материалы и методы. Регистр по типу «больших данных» содержал ретроспективные данные 2631 пациента с артериальными аневризмами. Из них для данного исследования было отобрано 390 человек, у которых САК потребовало лечения в условиях отделения интенсивной терапии, анестезии и реанимации (ИТАР). Исходный набор данных содержал 7290 признаков, из которых было отобрано 12 для обучения следующих моделей МО: логистическая регрессия, метод опорных векторов, метод случайного леса, градиентный бустинг, многослойный перцептрон, рекуррентная сеть с архитектурой долгой краткосрочной памяти (LSTM). Все этапы предобработки и моделирования данных выполнены на языке Python (версия 3.11.4) с использованием библиотек scikit-learn, tensorflow, keras и hyperopt. Вычислены значения и 95% доверительные интервалы (ДИ) AUROC и AURPC, прогностическая ценность, специфичность и чувствительность.

Результаты. В выборке было 246 (63%) женщин и 144 (37%) мужчины, средний возраст всех пациентов составил 54 ± 12,9 года. Летальный исход зарегистрирован у 133 (34%) пациентов, в том числе у 33 в течение 24 часов после поступления. Лучшей моделью, предсказывающей летальный исход, была рекуррентная нейронная сеть LSTM. При сравнении с другими моделями LSTM характеризовалась наибольшей предиктивной силой (AUROC – 0,83; 95% ДИ: 0,72–0,92, AURPC – 0,62; 95% ДИ 0,39–0,81) в отношении госпитальной летальности. Для периода времени нахождения в ИТАР с 3-х по 6-е сутки положительная прогностическая ценность модели составила 0,83, чувствительность – 0,95 и специфичность – 0,58.

Заключение. Рекуррентная нейронная сеть LSTM может быть адаптирована к разработке автоматизированных алгоритмов ведения пациентов с САК в критическом состоянии.

Издание: СЕЧЕНОВСКИЙ ВЕСТНИК
Выпуск: № 4, Том 15 (2024)
Автор(ы): Кивелёв Юрий Владимирович, Кривошапкин Алексей Леонидович, Суфианов Альберт Акрамович
Сохранить в закладках