В статье рассматривается методика расчетного анализа напряженнодеформированного состояния и оценка прочности несущих элементов подвески стеклопакета, изготовленного для монтажа на объекте, на основе использования численного моделирования методом конечных элементов и решения задачи механики упругого деформирования. Результаты численного расчета НДС показали, что уровень интенсивности напряжений в несущем элементе подвески стеклопакета типа внутренней коробчатой стойки превышает допустимых значений для используемого материала стойки и требует дополнительных исследований.
Данная работа посвящена верификации разработанных математических моделей и созданного программного обеспечения на тестовых моделях академических радиальных и осевых рабочих колес турбомашин, применяемых в АПК и в других отраслях промышленности. Проведен расчет собственных частот колебаний академической модели радиального колеса c 34-мя лопатками на основе двухмерных и трехмерных конечных элементов и оригинальных моделей стыковки. Выполнено сравнение точности расчета c экспериментом и данными других авторов. Определение динамических характеристик (собственных частот и форм колебаний) является важной научной задачей и позволяет решать проблему устранения явления резонанса, например, путём изменения формы деталей, а, следовательно, и повышения ресурса деталей турбомашин под действием различных факторов, таких как вращение, температура расстройка параметров и т. д. В настоящей работе дополнительно представлены результаты определения и верификации динамических академических рабочих колес осевых турбомашин. Получено, что результаты численных расчетов собственных частот колебаний исследуемых конструкций хорошо согласуются с экспериментальными данными и исследованиями других авторов, а также с аналитическими решениями. Дополнительно исследовано изменение связанности колебаний лопаток за счёт увеличения толщины диска рабочего колеса. Получено изменение, как форм колебаний, так и спектра собственных частот колебаний исходной конструкции. Значительное увеличение толщины диска приводит к локализации форм колебаний лопаток, как единичных конструкций. Данный вариант является одним из видов введения расстройки параметров и верификации исследования колебаний колес с неидентичными лопатками.
Рассматривается задача определения напряженно-деформированного состояния упругой области в рамках плоской деформации вокруг эллиптического отверстия. Приведены результаты численных расчетов, полученные на основе метода конечных элементов.
Рассматривается задача определения пластических областей в упруго-пластическом материале. Алгоритм численных расчетов основан на методе конечных элементов.
В данной работе построен приближенный метод решения уравнения для насыщенности в задаче двухфазной неравновесной фильтрации. Это уравнение относится к уравнению типа конвекции-диффузии с преобладанием конвекции и с дополнительным членом, содержащим производную решения третьего порядка. Из-за гиперболического характера уравнения его решение сопровождается рядом трудностей, которые приводят к необходимости тщательного выбора метода решения. На основе вычислительных экспериментов проведено сравнение трех классических стабилизированных методов конечных элементов (SUPG, GLS и USFEM).
В последнее время ведутся интенсивные исследования по залечиванию усталостных трещин путём пропускания импульсов электрического тока высокой плотности. При этом возникает задача определения на сколько укоротилась трещина за счёт оплавления материала в вершине трещины, вызванного джоулевым разогревом. Сложность решения этой задачи состоит в том, что после частичного заваривания трещины непросто определить местоположение вершины трещины с использованием оптического микроскопа. Определение точного местоположения вершины трещины также затруднено для образцов с загрязненной или корродированной поверхностью. В данной работе предложен подход к оценке длины трещины в образцах на усталостное нагружение, основанный на решении задачи теории упругости в двумерной постановке. Методом конечных элементов решена задача определения раскрытия трещины при нагружении консольно закреплённых образцов изгибающей нагрузкой в упругой области. Рассчитаны максимальные напряжения Мизеса в образце при нагружении единичной изгибающей силой. Величину раскрытия трещины можно измерить с помощью оптического измерительного микроскопа и по результатам расчёта определить длину трещины. Для тестирования предложенного подхода проведены экспериментальные исследования на полосках из титанового сплава ВТ6 с зеркально полированной поверхностью, которая позволила измерить длину усталостной трещины с помощью оптического микроскопа. Было получено три образца с трещинами разной длины, для которых проведены испытания на изгиб с измерением величины раскрытия трещины с помощью оптического микроскопа. Кроме того, длина трещины определялась из конечно-элементного расчёта, связывающего длину трещины с величиной её раскрытия при заданной нагрузке. Экспериментальные результаты хорошо согласуются с результатами моделирования.
Компьютерное моделирование новых методов обработки материалов носит многодисциплинарный характер и требует развития специального программного обеспечения с соответствующими математическими моделями и алгоритмами. В данной работе создана программа для конечно-элементного моделирования явлений, связанных с выделением Джоулева тепла в неоднородных системах. С использованием созданной программы исследована модельная система, имитирующая протекание электрического тока через полидисперсный порошковый материал. Модельный материал имеет матричную структуру, образован круглыми в сечении включениями и характеризуется различной проводимостью, концентрацией и взаимным расположением частиц. Показана возможность получения анизотропной структуры в результате теплового воздействия на порошковый материал при протекании электрического тока. Установлен перечень управляющих параметров технологического процесса для получения анизотропного порошкового материала. Предложен метод систематизации результатов компьютерного моделирования с использованием диаграмм, подобных фазовым диаграммам многокомпонентных соединений.
В статье предложена и реализована процедура восстановления асимптотического разложении полей напряжений, деформаций и перемещений в анизотропных материалах, обобщающих решение Уильямса для линейно упругих изотропных материалов, на основании конечно-элементного решения задачи о деформировании образца с дефектом в анизотропном ортотропном материале в приближении плоской задачи теории упругости. Коэффициенты разложения поля напряжений вблизи вершины трещины в анизотропном материале определяются с помощью переопределенного метода, предложенного изначально для восстановления асимптотического разложения из экспериментальных данных фотоупругого исследования. В настоящей работе данный метод распространен на анизотропные материалы с различными видами симметрии, и новизна предлагаемого подхода заключается в реконструкции асимптотического разложения из конечно-элементного решения для компонент тензора напряжений в узлах конечно-элементной сетки, что позволяет не исключать их поля перемещений составляющие, отвечающие перемещениям тела как абсолютно твердого тела. В предлагаемом подходе можно непосредственно в схеме переопределенного метода использовать данные конечно-элементных вычислений. Показано, что коэффициенты высших приближений надежно определяются посредством переопределенного метода, основанного на поле напряжений, найденном из конечно-элементного анализа.
Решение актуальной задачи повышения характеристик экономичности, приемистости и других рабочих параметров газотурбинных двигателей (ГТД) авиационного и наземного назначения обусловило применение в них многороторной (многокаскадной) компоновки роторной системы (РС), реализация которой чаще всего связана с использованием межроторных (межвальных) подшипников. Цель представленного в работе исследования заключается в дальнейшем развитии математического моделирования анализа динамического поведения РС ГТД, построенной с использованием двухроторной компоновки ее конструкции, и состоящей из роторов низкого (РНД) и высокого давления (РВД), между которыми расположен межвальный подшипник, служащий опорой турбины РВД на вал РНД. Математическая модель анализа динамического поведения РС ГТД построена на основе метода конечных элементов (МКЭ) и решения контактной задачи теории упругости, позволяющей учитывать в конструкциях роторов условия сопряжения деталей; реализованная в виде комплекса программ (решателя). С применением представленной математической модели получены амплитудно-временные (частотные) характеристики (АВХ) роторной системы конструкции современного газотурбинного двигателя, а также картина деформированного состояния и поля динамических напряжений. Сравнительный анализ результатов динамического поведения РС без учета влияния межвального подшипника и с учетом этого влияния показывает, в частности, появление дополнительных гармоник в рабочей области частот вращения РС, а также интерференцию колебаний в виде «размытия» АВХ.
Проведено исследование точности волновых оболочечных конечно-элементных моделей. Полученные результаты сравнивались с результатами аналитического расчёта. По результатам исследований для всех рассмотренных форм колебаний типовых конструкций расхождение значений собственных частот не превышает 5 %.
В работе даётся описание вычислительной модели, основанной на методе численного интегрирования и предназначенной для решения в линейной эйлеровой постановке задач устойчивости сжимаемых в осевом направлении вафельных цилиндрических оболочек. С принятием гипотезы «размазывания» указанные оболочки рассматриваются по схеме конструктивно-ортотропных оболочек, подчиняющихся гипотезам Кирхгофа-Лява. На основе тетраэдрального элемента (Tet10) в среде программного комплекса MSC Patran/Nastran строится также альтернативная конечно-элементная модель для решения тех же задач. Достоверность получаемых численных решений подтверждается хорошим согласованием результатов расчётов на основе отмеченной альтернативной вычислительной модели и имеющимся решением методом конечных разностей. Результаты проведённых расчётов на устойчивость при осевом сжатии образцов вафельных цилиндрических оболочек, изготовленных из алюминиевых сплавов, сравниваются с имеющимися экспериментальными данными.
еталлических трубах из стали Х18Н10Т, возникающих в режимах термоциклирования при многократном пропускании по трубе нагретого воздушного потока: общая относительная деформация образца, как и величина локальной деформации, изменяется на уровне 10-3; величина термоупругих напряжений ~ 300 МПа. Результаты моделирования напряженно-деформированного состояния цилиндрического держателя тензодатчика из стали 40Х2Н2МА под действием равномерно распределенной нагрузки (прикладываемая сила ~ 20 тс) показывают, что максимальные по величине напряжения и деформации возникают на площадке пятна контакта купола держателя с силопередающей плитой, а минимальные - в плоскости фиксации держателя. Модели и результаты расчета подготовлены в среде компьютерного моделирования ANSYS.