SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества научной социальной сети. Здесь хранятся все материалы с открытым доступом. Внесите свой вклад в общую библиотеку добавив больше книг и статей в свой раздел «Моя библиотека» с открытым доступом.
свернутьSciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
От других учебников математического анализа настоящая книга отличается прежде всего тем, что мы совершенно отказались от понятия предела переменной величины, сведя все вопросы теории пределов к рассмотрению предельных значений функций. Это позволяет сделать изложение логически более прозрачным. Правда, в вышедшей недавно книге академика Н. Н. Лузина (*) дано обоснование понятия предела переменной величины; однако, потребуется некоторое время, чтобы эти идеи вошли в учебники анализа.
При изложении мы стремились избегать формализма и догматизма. Так, всякий раз, когда мы перечисляли условия применимости той или иной теоремы, мы приводили примеры, указывающие на необходимость этих условий. В теоретических приложениях мы не ограничивались обычным формальным определением длины и площади, но дали развернутую их теорию, не зависящую от интегрального исчисления.
Настоящая работа посвящена исследованиям по теории роста функций, представленных, или рядом Taylor’a, или произведениями типа Weierstrass’a, а также изучению общих принципов роста модуля функций с точки зрения одно значности роста модуля функций; последнее понятие — новое в анализе, и его роль вероятно будет оценена в будущем.
Весьма естественно, если предложен функции — ряд или функции — произведение (Weierstrass’овское), изучать их рост асимптотически и непосредственно, изучая индивидуальности заданных рядов или произведений; это мы и делаем на примере функции E(
В тексте используются результаты, полученные с помощью специализированной компьютерной программы символьных вычислений — MAPLE (десятая версия), а также следующие условные обозначения и равенства: Сji = C (i, j) — биномиальные коэффициенты; hypergeom — гипергеометрическая функция; pochhammer — функция Похгаммера; (m + 1), (р, x − s) — полная и неполная гамма-функции;
Эта книга представляет собою руководство, написанное применительно к действующим учебным программам наших университетов. Имея в виду все возрастающее значение теории функций в системе образования математиков, я включил в книгу (мелким шрифтом) также и ряд вопросов, выходящих за пределы программы.
Не желая, однако, чрезмерно увеличивать объём книги, я был вынужден всё же оставить в стороне много важного материала теорию производных, более общие теории интегрирования, вопросы, пограничные с теорией функций комплексной переменной и многое другое. Изложению этих вопросов я предполагаю посвятить особую книгу.
Теория функций вещественной переменной излагается в университетах, начиная с третьего курса. Поэтому у читателя предполагается свободное владение основными понятиями анализа иррациональные числа, теория пределов, важнейшие свойства непрерывных функций, производные, интегралы, ряды считаются известными в объёме любого обстоятельного курса дифференциального и интегрального исчисления.
Книга посвящена, в основном, функциям одной вещественной переменной. Лишь в трёх главах (XI—XIII) рассматриваются функции многих переменных и функции множества.
Книга содержит большое количество упражнений, и сравнительно лёгкие, доступные широкому кругу читателей, и значительно более трудные, которые могут служить хорошим материалом для студенческих математических кружков.
Конструктивная теория функций берёт своё начало в замечательных работах нашего великого математика П. Л. Чебышева по теории интерполирования, по механическим квадратурам, по проблеме моментов и особенно по многочленам, наименее уклоняющимся от заданной функции. Исследования П. Л. Чебышева были продолжены его учениками А. Н. Коркиным, Е. И. Золотарёвым, А. А. и В. А. Марковыми.
Дальнейшее развитие конструктивной теории также связано с именами русских и советских учёных. Из них в первую очередь следует указать на С. Н. Бернштейна, который, собственно, и оформил конструктивную теорию функций как самостоятельную математическую дисциплину, поставив и разрешив ряд основных проблем этой отрасли анализа. Кстати, и самый термин «конструктивная теория функций» предложен С. Н. Бернштейном.
Книга представляет собой пособие по специальным главам математики для вузов и является естественным продолжением общего курса математики этого же автора. Книга содержит следующие главы: теория поля, теория аналитических функций, операционное исчисление, линейная алгебра, тензоры, вариационное исчисление, интегральные уравнения, обыкновенные дифференциальные уравнения. Изложение проводится с позиций современной прикладной математики с максимальным использованием интуиции и аналогий, со специальным вниманием к качественному и количественному описанию фактов.
Книга рассчитана на студентов вузов, преподавателей, инженеров и научных работников в области технических наук.
Эта книга написана на основе лекций, прочитанных автором на протяжении ряда лет студентам высших технических учебных заведений различных специальностей, а также студентам-физикам. Ее содержание соответствует утвержденной в 1964 г. программе общего курса высшей математики для инженерно-технических специальностей вузов. Некоторые менее существенные, по мнению автора, пункты из этой программы в книге опущены.
С другой стороны, добавлен ряд вопросов, выходящих из указанной программы, но непосредственно примыкающих к ней. Для удобства читателя изложение этих вопросов напечатано мелким шрифтом; мелким шрифтом набраны также пункты, которые в указанной программе приведены как необязательные, и примеры.
В этой небольшой по объёму книге автору удалось собрать и изложить богатый материал, разбросанный по различным источникам. Компактное изложение предполагает определённую математическую подготовку читателя, однако для чтения книги достаточно знакомства с традиционными курсами анализа и высшей алгебры. Книгу можно использовать как учебное пособие при изучении современного анализа.
Книга представляет интерес для математиков различных специальностей. Она будет полезна преподавателям, аспирантам и студентам университетов и пединститутов.
Книга представляет собой пособие по решению задач математического анализа (функции одной переменной). Большинство параграфов книги содержит краткие теоретические введения, решения типовых примеров и задачи для самостоятельного решения. Кроме задач алгоритмически-вычислительного характера, в ней содержится много задач, иллюстрирующих теорию и способствующих более глубокому её усвоению, развивающих самостоятельное математическое мышление учащихся.
Цель книги — научить студентов самостоятельно решать задачи по курсу математического анализа (изучение теории должно производиться по какому-либо из существующих учебников).
Книга предназначена для студентов технических, экономических вузов и нематематических факультетов университетов. Она может оказаться полезной лицам, желающим пройти углублённый вузовский курс математического анализа, начинающим преподавателям, а также учителям средней школы, ведущим факультативные курсы в старших классах.