SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Подробно изложен теоретический и экспериментальный материал, лежащий в основе квантовой физики. Большое внимание уделено физическому содержанию основных квантовых понятий и математическому аппарату, используемому для описания движения микрочастиц. Решение большого количества задач не только иллюстрирует излагаемый материал, но в ряде случаев развивает и дополняет его. Рассмотрены наиболее актуальные и перспективные приложения квантовых эффектов в науке и технике.
Содержание учебного пособия соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.
Для студентов технических университетов и вузов.
Изложены физические предпосылки создания квантовой механики. Сформулированы основные постулаты теории. Рассмотрены фундаментальные задачи квантовой механики: гармонический осциллятор, момент импульса, атом водорода, системы тождественных частиц.
В книге систематически изложена нерелятивистская квантовая механика. Автор детально разбирает физическое содержание и подробно рассматривает математический аппарат одного из самых важных разделов современного естествознания - атомной теории.
Рассматриваются вполне интегрируемые модели квантовой теории поля и статистической физики в двумерном пространстве-времени. Современный метод решения таких моделей - квантовый метод обратной задачи - последовательно изложен в книге. Он позволяет решить важнейшую задачу вычисления корреляционных функций и в явном виде получить асимптотику корреляционных функций на больших расстояниях. Общий подход иллюстрируется на широком классе моделей, среди которых наиболее известными являются бозе-газ частиц с точечным взаимодействием, модель синус-Гордон и магнетик Гейзенберга. Дан широкий обзор литературы, проводится сравнение различных способов решения моделей.
Для научных сотрудников, аспирантов и студентов старших курсов, специализирующихся в области математической и теоретической физики.
Монография известного физика из ФРГ содержит последовательное и доступное изложение теоретических основ метода матрицы плотности и его применении к проблемам квантовой электроники, атомной и молекулярной спектроскопии, физики необратимых процессов. Основные понятия подробно обсуждаются и иллюстрируются простыми примерами.
Для физиков теоретиков и экспериментаторов, занимающихся квантовой электроникой, лазерной спектроскопией, ядерной физикой, а также студентов старших курсов и аспирантов соответствующих специальностей.
В книге основное внимание уделяется интерпретации квантовой теории. Квантовая механика рассматривается как теория квантовых статистических ансамблей, как прямое обобщение классической статистической механики. Вводится фундаментальное понятие квантового ансамбля и широко используется квантовомеханическая матрица плотности. Детально прослеживается связь квантовой и классической статистической физики. Подробно излагается теория квантовых измерений (в качестве примера рассмотрена работа фотопластинки и пузырьковой камеры). Лекции основаны на результатах исследований автора по фундаментальным проблемам квантовой теории, которым посвящена его книга «Принципиальные вопросы квантовой механики» (М., Наука, 1987)
Для студентов, изучающих квантовую механику. Может быть рекомендовано изучающим философские вопросы естествознания и вопросы интерпретации квантовой теории, а также молодым научным работникам.
Книга, написанная известными американскими физиками-теоретиками, представляет собой систематический курс квантовой электродинамики. Том 1. Релятивистская квантовая механика, Том 2. Релятивистские квантовые поля. Рассмотрение всех вопросов проводится на основе метода функции распространения, что позволяет сделать изложение наглядным и доступным. В 1-ом томе подробно обсуждаются уравнение Дирака и свойства его решений, метод функции распространения, проблема перенормировок и электродинамика частиц с нулевым спином и др. Развитые методы применяются к неэлектромагнитным взаимодействиям элементарных частиц. Во 2-ом томе последовательно и продуманно изложены основы квантовой теории поля, а также ряд специальных вопросов, включающих методы ренорм-группы и методы дисперсионных соотношений. В конце каждой главы помещены задачи, способствующие пониманию изложенного.
Квантовая статистическая физика изучает свойства систем, состоящих из большого числа частиц, при низких температурах. В последние годы в этой области физики достигнут большой прогресс, что связано главным образом с применением математических методов квантовой теории поля. Основа этих методов — диаграммная техника — обладает высокой степенью автоматизма и наглядности. С ее помощью удалось решить целый ряд интересных физических вопросов, которые раньше были недоступны для рассмотрения. В книге изложены эти новые методы и основные результаты, полученные за последнее время.
Она предназначена для научных работников и аспирантов-физиков, а также для студентов старших курсов, специализирующихся в области теоретической физики, физики твердого тела и низких температур.
Просто о сложных методах логического анализа
Получение, обработка, передача и хранение информации является неотъемлемой частью
созидательной деятельности современного общества. Прогресс XX века во многом обусловлен
развитием методов и средств передачи и обработки информационных сигналов с использова-
нием электромагнитных волн [1–5]. Появление полупроводниковой микроэлектроники [6, 7],
лазерной техники [8–12] и оптоволоконных линий связи [13, 14] привело к созданию гло-
бальной сети Интернет, повсеместному распространению средств коммуникации, вычисли-
тельных устройств и персональных компьютеров, цифровых средств радио-электронной и
оптико-электронной регистрации и мониторинга, а также компактных систем хранения дан-
ных. Развитие технологий матричных фото-детекторов типа ПЗС и КМОП привело к по-
явлению цифровой фотографии и цифрового видео. В результате количество генерируемой
и накапливаемой цифровой информации имеет тенденции экспоненциального роста, и по
современным оценкам [15] объём глобальной датасферы к 2025 году может достичь 175 ЗБ
(ЗеттаБайт или 1021 Байт). Параллельно с этим, подчиняясь закону Мура, возрастают требо-
вания к вычислительной способности систем обработки больших массивов данных. Уровень
современных вычислительных задач, требует применение устройств [16] с производительно-
стью 1018 вычислительных операций в секунду (OPS). В этой связи создание сверхшироко-
полосных коммуникационных систем с высокой пропускной способностью и стабильностью,
систем надёжного и компактного хранения данных, а также систем обработки с высокой
вычислительной мощностью и низким энергопотреблением является одними из важнейших
задач в современных информационных технологиях.
Использование света для формирования, передачи и детектирования информационных
сигналов является привлекательным благодаря высокой собственной частоте колебаний элек-
тромагнитных волн оптического диапазона (300 ГГц ÷ 3 ПГц), а также возможности сво-
бодного и независимого распространения световых сигналов по воздуху, в стекле и в других
известных прозрачных мате