SCI Библиотека

SciNetwork библиотека — это централизованное хранилище... ещё…

Результаты поиска: 65098 док. (сбросить фильтры)
Диссертация: Фотонные системы формирования и обработки больших массивов цифровых данных

Получение, обработка, передача и хранение информации является неотъемлемой частью
созидательной деятельности современного общества. Прогресс XX века во многом обусловлен
развитием методов и средств передачи и обработки информационных сигналов с использова-
нием электромагнитных волн [1–5]. Появление полупроводниковой микроэлектроники [6, 7],
лазерной техники [8–12] и оптоволоконных линий связи [13, 14] привело к созданию гло-
бальной сети Интернет, повсеместному распространению средств коммуникации, вычисли-
тельных устройств и персональных компьютеров, цифровых средств радио-электронной и
оптико-электронной регистрации и мониторинга, а также компактных систем хранения дан-
ных. Развитие технологий матричных фото-детекторов типа ПЗС и КМОП привело к по-
явлению цифровой фотографии и цифрового видео. В результате количество генерируемой
и накапливаемой цифровой информации имеет тенденции экспоненциального роста, и по
современным оценкам [15] объём глобальной датасферы к 2025 году может достичь 175 ЗБ
(ЗеттаБайт или 1021 Байт). Параллельно с этим, подчиняясь закону Мура, возрастают требо-
вания к вычислительной способности систем обработки больших массивов данных. Уровень
современных вычислительных задач, требует применение устройств [16] с производительно-
стью 1018 вычислительных операций в секунду (OPS). В этой связи создание сверхшироко-
полосных коммуникационных систем с высокой пропускной способностью и стабильностью,
систем надёжного и компактного хранения данных, а также систем обработки с высокой
вычислительной мощностью и низким энергопотреблением является одними из важнейших
задач в современных информационных технологиях.
Использование света для формирования, передачи и детектирования информационных
сигналов является привлекательным благодаря высокой собственной частоте колебаний элек-
тромагнитных волн оптического диапазона (300 ГГц ÷ 3 ПГц), а также возможности сво-
бодного и независимого распространения световых сигналов по воздуху, в стекле и в других
известных прозрачных мате

Формат документа: pdf
Год публикации: 2021
Кол-во страниц: 256
Загрузил(а): Старцев Вадим
Доступ: Только участникам сообщества
Патент: СПОСОБ ЛАЗЕРНОГО МОДИФИЦИРОВАНИЯ СТЕКЛА ДЛЯ ЗАПИСИ ИНФОРМАЦИИ

Изобретение относится к области оптического
материаловедения, к способу модифицирования
стекла в объеме под действием фемтосекундного
лазерного излучения. Способ лазерного
модифицирования стекла для записи информации
включает локальное облучение стекла состава,
мас.%: 3,85 CdS; 22,16 K2O; 19,27 ZnO; 3,86 B2O3;
50,86 SiO2 пучком фемтосекундного излучения
ближнего ИК диапазона, сфокусированным через
объектив с числовой апертурой 0,45-0.65, с
формированием микрообластей, при этом
записывают микрообласти, обладающие
одновременно люминесценцией, в том числе
частично-поляризованной, и поляризационно-
зависимым двулучепреломлением, а для записи
используют импульсы в количестве 5⋅103÷106 с
линейной поляризацией, длительностью 180-900
фс, энергией 100÷600 нДж и частотой следования
50-200 кГц. Техническим результатом является
формирование в стекле микрообластей,
обладающих одновременно люминесценцией, в
том числе частично-поляризованной, и
п о л я р и з а ц и о н н о - з а в и с и м ы м
двулучепреломлением, для повышения плотности
записи информации.

Вид патента: Изобретение
Год публикации: 2022
Загрузил(а): Старцев Вадим
Доступ: Только участникам сообщества
Патент: CПОСОБ ЛАЗЕРНОГО МОДИФИЦИРОВАНИЯ СТЕКЛА

Изобретение относится к способу
модифицирования структуры стекла под
действием лазерного пучка для формирования
люминесцирующих микрообластей и может быть
использовано для многократной перезаписи и
хранения информации. В силикатном стекле,
содержащем сульфид кадмия, записывают
микрообласть при локальном облучении
фемтосекундными лазерными импульсами с
длиной волны в ближнем инфракрасном
диапазоне, с энергией лазерных импульсов в
пределах 100-400 нДж, длительностью лазерных
импульсов 180-600 фс, частотой следования
лазерных импульсов в пределах 100-1000 кГц. Для
фокусировки лазерного пучка применяют
объектив с числовой апертурой 0,45-0,85. Далее
возможно стирание записанной микрообласти
путем ее сканирования фемтосекундным
лазерным пучком или перемещения стекла
относительно сфокусированного пучка по
траектории, которая задается скоростью
перемещения в диапазоне 10-30 мкм/с, диаметром
в диапазоне 30-100 мкм и частотой осцилляций
вдоль оси, перпендикулярной направлению
перемещения, в плоскости, перпендикулярной
направлению падения записывающего лазерного
пучка, равной 20 Гц. Для стирания используется
лазерный пучок с длиной волны в ближнем
инфракрасном диапазоне, с энергией лазерных
импульсов в пределах 100-400 нДж,
длительностью лазерных импульсов 180-600 фс,
частотой следования лазерных импульсов в
пределах 50-500 кГц при фокусировке лазерного
пучка объективом с числовой апертурой 0,45-0,85.
В стертой области возможна повторная запись
микрообластей при локальном облучении
фемтосекундными лазерными импульсами с
длиной волны в ближнем инфракрасноиапазоне и параметрами лазерного пучка,
используемыми при записи исходных
микрообластей. Технический результат -
возможность создания долговечной оптической
памяти с возможностью перезаписи.

Вид патента: Изобретение
Год публикации: 2018
Загрузил(а): Старцев Вадим
Доступ: Только участникам сообщества
Патент: СПОСОБ ЗАПИСИ ОПТИЧЕСКОЙ ИНФОРМАЦИИ В СТЕКЛЕ

Изобретение относится к области оптики и
может быть использовано для записи и хранения
оптической информации в виде текста,
изображений, штрих-кодов и цифровой битовой
информации. Целью изобретения является
увеличение скорости записи оптической
информации в стекле и упрощение состава стекла.
Сущность изобретения заключается в том, что
силикатное стекло, содержащее ионы и
молекулярные ионы серебра, локально облучают
фемтосекундными инфракрасными лазерными
импульсами с длиной волны 0.8-1.1 мкм. После
этого облученная зона стекла приобретает
люминесцентные свойства при возбуждении
люминесценции излучением с длиной волны 350-
410 нм. 2 ил

Вид патента: Изобретение
Год публикации: 2015
Загрузил(а): Старцев Вадим
Доступ: Только участникам сообщества
Статья: SONY. Системы хранения данных

Оптические архивы
ПО для оптических архивов

Формат документа: pdf
Год публикации: 2022
Кол-во страниц: 33
Загрузил(а): Старцев Вадим
Доступ: Только участникам сообщества
Статья: Ceramic Nano Memory

Data Storage for the Yottabyte Era

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 44
Загрузил(а): Старцев Вадим
Доступ: Только участникам сообщества
Статья: Project Silica: Towards Sustainable Cloud Archival Storage in Glass

Sustainable and cost-effective long-term storage remains
an unsolved problem. The most widely used storage technologies today are magnetic (hard disk drives and tape). They use media that degrades over time and has a limited lifetime, which leads to inefficient, wasteful, and costly solutions for long-lived data. This paper presents Silica: the first cloud stor-
age system for archival data underpinned by quartz glass,
an extremely resilient media that allows data to be left in
situ indefinitely. The hardware and software of Silica have
been co-designed and co-optimized from the media up to the
service level with sustainability as a primary objective. The
design follows a cloud-first, data-driven methodology underpinned by principles derived from analyzing the archival workload of a large public cloud service. Silica can support
a wide range of archival storage workloads and ushers in a new era of sustainable, cost-effective storage.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 16
Загрузил(а): Старцев Вадим
Доступ: Только участникам сообщества
Статья: Cerabyte

ceramic-on-glass

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 3
Загрузил(а): Старцев Вадим
Доступ: Только участникам сообщества
Книга: РЕКОМЕНДАЦИИ ПО ВЫБОРУ ОПТИЧЕСКИХ ДИСКОВ ДЛЯ ХРАНЕНИЯ АРХИВНЫХ ДОКУМЕНТОВ

Рекомендации по выбору оптических дисков для хранения архивных
документов разработаны в рамках Федеральной целевой программы
«Культура России» 2006-2011 гг. п.22 (77).
В работе на основе практического опыта и анализа литературы
представлены методические рекомендации по выбору оптических дисков
для хранения архивных документов

Формат документа: pdf
Год публикации: 2011
Кол-во страниц: 83
Загрузил(а): Старцев Вадим
Доступ: Только участникам сообщества
Статья: Вихревая безопасность при полете на заданном эшелоне

С каждым годом возрастает интенсивность воздушного движения между странами и внутри отдельных стран. Как правило, воздушные трассы для полетов проходят по одним и тем же маршрутам. В результате этого образуются так называемые дороги в небе. А где дороги, там со временем появляются ухабы. В данном случае в виде воздушных ям, восходящих и нисходящих потоков и повышенной турбулентности. Важную роль в обеспечении безопасности полетов воздушных судов по маршрутам оказывает продольное и вертикальное эшелонирование. В настоящее время принят ряд регламентирующих документов, определяющих безопасные дистанции на эшелоне. Так, при наличии турбулентности в вихревом следе продольное эшелонирование основывается на разбивке типов воздушных судов на три категории в соответствии с максимальной сертифицированной взлетной массой. А с ноября 2011 г. в России внедрен западный стандарт вертикального эшелонирования RVSM (Reduced Vertical Separation Minimum). Вертикальное эшелонирование – это расстояние между вертикальными эшелонами полета воздушных судов по маршруту. Ранее это расстояние составляло 600 м (2 000 футов), но в связи с ростом интенсивности воздушного движения было принято решение уменьшить вертикальное эшелонирование до 300 м (1 000 футов). Таким образом, на самом распространенном эшелоне полетов воздушных судов вертикальное эшелонирование составляет 300 м. Возникает вопрос, а обеспечивает ли это расстояние безопасность воздушных перевозок? Дело в том, что высота эшелона совсем необязательно совпадает с реальной высотой полета воздушного судна. Высотомеры в самолетах – по сути калибруемые барометры, то есть высоту они вычисляют по разнице давления на земле и в воздухе. Для вычисления истинной высоты потребовалось бы постоянно вносить в высотомеры данные об атмосферном давлении в каждой точке маршрута и учитывать высоту этих точек над уровнем моря. Поэтому принято пользоваться стандартным давлением. Если на всех воздушных судах будет установлено одинаковое значение давления на альтиметре, то и показания высоты на приборе в заданной точке воздушного пространства будут одинаковыми. Поэтому с определенного момента при наборе высоты (высота перехода) и до определенного момента при снижении (эшелон перехода) высота воздушного судна рассчитывается по стандартному давлению. Значение стандартного давления (QNE) одинаково во всем мире и составляет 760 мм рт. ст. (1013,2 гектопаскаля). Таким образом, полет по маршруту контролируется по альтиметру, барометрическому высотомеру, который входит в пилотажно-навигационный комплекс. Анализ точности работы этого прибора показывает, что при резком перепаде атмосферного давления показания альтиметра могут отличаться от истинного показания на **±**100 м. Известно, что за летящим самолетом образуется вихревой след. Со временем вихревой след опускается вниз и может оказаться на другом эшелоне. Может ли это стать причиной воздушных ям на эшелоне? Для ответа на поставленный вопрос в качестве объекта исследования был выбран самолет А-380. Это один из самых больших самолетов в мире. Поэтому исследование вихревого следа за А-380 на эшелоне полета как самом опасном с точки зрения воздействия его вихревого следа на другие самолеты позволит понять, насколько безопасны и обоснованны принятые продольное и вертикальное эшелонирование. Для исследования был использован специальный расчетно-программный комплекс, базирующийся на методе дискретных вихрей. Этот комплекс прошел необходимую апробацию и государственную регистрацию. 




Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Язык(и): Русский
Доступ: Всем