Различные процессы, протекающие в средах с инородными включениями, описываются решениями эллиптических краевых задач с теми или иными граничными условиями, задаваемыми на поверхностях этих включений. При большом числе включений области, в которых ставятся такие краевые задачи, имеют чрезвычайно сложную структуру, и даже при помощи численных методов практически невозможно найти их решения.
Поэтому принципиальное значение приобретает вопрос о том, как и при каких условиях задачи такого типа можно свести к значительно более простым задачам для однородной среды и найти приближение их решения. В монографии развивается общая математическая теория, дающая ответ на этот вопрос и охватывающая большое количество конкретных задач. В качестве приложений работы могут представлять практический интерес для физиков и инженеров.
Книга предназначена для математиков — научных работников, аспирантов и студентов старших курсов. Она будет полезна также физикам и радиофизикам, занимающимся интересующими их вопросами описания волн в средах с большим числом мелких неоднородностей и аналогичными вопросами, возникающими в теории упругости и гидромеханике.