SCI Библиотека

SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…

Книга: Курс дифференциальных уравнений (5-е изд.)

Курс дифференциальных уравнений в объёме нашей университетской программы по необходимости слагается из глав, соответствующих различным отделам научной теории этой ветви математического анализа. Элементарные методы интеграции, теоремы существования, особые решения, общая теория линейных уравнений — эти главы в современном состоянии науки связаны с теорией групп Ли, с применением методов теории функций действительного и комплексного переменного, с методами линейной алгебры и т. п.

Современное понятие о математической строгости, постепенно внедряющееся в курсы анализа, не позволяет строить учебник дифференциальных уравнений с невыясненной точки зрения на взаимную связь отделов — например, элементарных методов интегрирования и теорем существования.

Далее, развитие самой теории и современных её приложений требует введения в университетский курс новых вопросов, связанных, с одной стороны, с развитием качественных методов, с другой стороны, с теоремами колебаний для линейных дифференциальных уравнений.

Формат документа: pdf, djvu
Год публикации: 1950
Кол-во страниц: 473 страницы
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Обыкновенные дифференциальные уравнения, том 2.

Если это условие не выполняется, то решение называется неустойчивым. Для некоторых приложений достаточно, чтобы неравенства (5) выполнялись лишь для значений (x \geq x^0); в этом случае говорят о положительной устойчивости¹.

Иногда бывает интересно требовать выполнения неравенств (5) лишь для части функций (y_1(x), y_2(x), \ldots, y_n(x)), характеризующей некоторые стороны изучаемого явления; в этом случае говорят о частичной устойчивости, или об устойчивости в смысле Раута [1]. Пусть, например, уравнение второго порядка [ y’’ = f(x; y, y’) \tag{6}]

Формат документа: pdf, djvu
Год публикации: 1954
Кол-во страниц: 414 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Обыкновенные дифференциальные уравнения (4-е изд.)

Эта книга написана на основе лекций, которые я в течение ряда лет читал на механико-математическом факультете Московского государственного университета. При составлении программы лекций я исходил из уверенности, что выбор материала не должен быть случайным и не должен опираться исключительно на сложившиеся традиции. Наиболее важные и интересные применения обыкновенных дифференциальных уравнений находятся в теории колебаний и в теории автоматического управления.

Эти применения и послужили руководством при выборе материала для моих лекций. Теория колебаний и теория автоматического управления, несомненно, играют очень важную роль в развитии всей современной материальной культуры, и потому я считаю, что такой подход к выбору материала для курса лекций является, если и не единственно возможным, то во всяком случае разумным.

Стремясь дать студентам не только чисто математическое орудие, пригодное для применения в технике, но также продемонстрировать на самом примере органическую связь теоретических вопросов с их приложениями, я включил в лекции вопросы, подробно изложенные в § 13, 27, 29. Эти вопросы составляют неотъемлемую органическую часть моего курса лекций и, соответственно, этой книги.

Формат документа: pdf, djvu
Год публикации: 1974
Кол-во страниц: 331 страница
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Введение в топологическую динамику

Топологическая теория динамических систем (топологическая динамика), начало которой было положено Дж. Д. Биркгофом, особенно интенсивно развивалась в 30-е — 40-е годы нашего столетия. Многие из полученных в то время результатов содержатся в монографии В. В. Немыцкого и В. В. Степанова [1] (четвёртая глава в первом издании и пятая — во втором) и книге В. Х. Готшалка и Г. А. Хедлунда [1]. В 50-х—60-х годах проведены исследования, которые, в частности, позволили по-новому взглянуть на некоторые полученные ранее результаты.

В настоящей работе излагаются основы теории динамических систем, однако автор старался по мере возможности затронуть и некоторые вопросы, выходящие за рамки “введения” в топологическую динамику. В частности, в последней главе рассмотрены вкратце различные обобщения теории динамических систем.

Приведенная в конце книги библиография содержит лишь работы, цитированные в этой книге; дополнительным источником может служить библиография, опубликованная В. Х. Готшалком [1].

Формат документа: pdf, djvu
Год публикации: 1970
Кол-во страниц: 143 страницы
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Устойчивость и стабилизация движения по отношению к части переменных

Рассматривается задача об устойчивости движения по отношению к части переменных, получившая за последние 30 лет интенсивное развитие, и различные аспекты ее решения методом функций Ляпунова.

Излагаются обобщения классических теорем Ляпунова и Четаева, изучается проблема существования функций Ляпунова. Рассматриваются вопросы равномерности асимптотической устойчивости, оптимальной стабилизации, использования двух и большего числа функций Ляпунова, применения дифференциальных неравенств, сохранения устойчивости при действии возмущений. Излагаемый материал иллюстрируется примерами.

Для научных работников, аспирантов и студентов старших курсов университетов, занимающихся теорией устойчивости и ее применениями.

Формат документа: pdf, djvu
Год публикации: 1987
Кол-во страниц: 256 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Метод контурного интеграла и его применение к исследованию задач для дифференциальных уравнений

Монография состоит из двух частей. Первая посвящена систематическому изложению разработанного автором вычетного метода и его применению к решению широких классов задач дифференциальных уравнений, не поддающихся решению известными методами. Во второй части дается новый метод, названный методом контурного интеграла, в применении к исследованию весьма общих линейных смешанных задач дифференциальных уравнений.

Книга рассчитана на студентов старших курсов, аспирантов механико-математических и физико-математических факультетов университетов и пединститутов, научных и инженерно-технических работников, имеющих дело с дифференциальными уравнениями в частных производных.

Формат документа: pdf, djvu
Год публикации: 1964
Кол-во страниц: 466 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: О кривых, определяемых дифференциальными уравнениями

Классический период развития математического анализа — XVIII век — оставил в наследство математике так называемые элементарные методы интегрирования дифференциальных уравнений; тогда же был в основном выделен тот класс уравнений, в котором нахождение общего решения сводится к квадратурам или алгебраическим операциям.

Первая половина XIX в. проходит под знаком критики этого наследства в двух направлениях. С одной стороны, Коши ставит и для достаточно широкого класса уравнений разрешает задачу о существовании решения.

С другой стороны, Лиувилль доказывает невозможность нахождения в квадратурах общего решения специального уравнения Риккати, за исключением известных случаев, когда это решение выражается в виде комбинаций показательных и рациональных функций. Это открытие значительно обесценило отыскание новых случаев элементарной интегрируемости.

Формат документа: pdf, djvu
Год публикации: 1947
Кол-во страниц: 385 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Составление дифференциальных уравнений

Учебное пособие для математических, химических, биологических, геофизических университетов, педагогических институтов, руководством по составлению обыкновенных, а также простейших уравнений.

Адресовано широкому кругу лиц, встречающихся с уравнениями в учебной, производственной работе.

Формат документа: pdf, djvu
Год публикации: 1973
Кол-во страниц: 560 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Качественная теория дифференциальных уравнений

Настоящая монография возникла в результате совместной работы авторов в качестве руководителей ряда семинаров в Московском университете. Это в значительной мере определило содержание книги. Она не ставит своей целью дать энциклопедию качественных методов в теории дифференциальных уравнений; выбор материала обусловлен научными интересами авторов и общим направлением московской математической школы.

Разбираемые в этой книге темы объединены одной общей идеей: по существу это теория геометрических и даже, точнее, топологических свойств семейств интегральных кривых. Некоторым отступлением от этой программы являются главы II и III, где рассматриваются такие аффинные инварианты этого семейства, а также глава V, где мы имеем дело с метрикой некоторого семейства интегральных кривых. Ввиду такого плана монография в ней, в частности, совершенно не представлена столь богатая результатами и приложениями теория устойчивости по Ляпунову, бесспорно относящаяся к качественной теории дифференциальных уравнений.

В заключение укажем, что хотя работа над книгой проходила в тесном контакте между авторами, но отдельные главы написаны отдельными авторами. Именно: введение и гл. IV и V написаны В. В. Степановым, а гл. I, II и III — В. В. Немыченко.

Формат документа: pdf, djvu
Год публикации: 1947
Кол-во страниц: 448 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Нелокальные проблемы теории колебаний

В последнее время усилия многих специалистов по теории дифференциальных уравнений были направлены на изучение так называемых нелокальных проблем этой теории. Среди таких проблем видное место занимают вопросы существования периодических решений и их устойчивости в большом. Именно этому кругу вопросов и посвящается предлагаемая книга. В ней рассматриваются два широких класса систем: системы, правые части которых зависят периодическим образом от времени, и автономные системы.

Книга состоит из трех глав.

В первой главе изучаются в основном многомерные периодические системы.

§ 1 носит вводный характер. В этом параграфе рассматриваются смысловые автономные и периодические системы. Даются основные определения. Доказываются важные для дальнейшего обсуждения свойства о поведении решений периодических и автономных систем.

Формат документа: pdf, djvu
Год публикации: 1964
Кол-во страниц: 369 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем